残菜調査による栄養摂取量の把握についての一考察
=秤量法と質問紙法=

尾木千恵美・内田美佐子・平光美津子

はじめに

特定給食施設における栄養管理は、給食対象者の健康保持・増進や疾病の治療・改善などをはかることを目的に、対象者に適した栄養・食事計画を立案し、実施されている。対象者にとり適切な栄養量を確保できるよう給与栄養目標量を設定することは、栄養管理の目的を達成していくうえで大切である。

これまで、対象者を1つの集団としてとらえ、日本人の栄養所要量を用いて栄養・食事計画を行い、食事の提供を行ってきた。しかし、給食利用者は、性や年齢が同じであっても身体状況や生活状況が異なるなど個人差があり、集団を平均化して計画された食事が利用者一人一人にとっては、適切な給与栄養量の給食内容であるとは必ずしも言い切れないかった。平成17年4月から使用されている「日本人の食事摂取基準（2005年版）」では、集団を「個人」が多数集まったものとしてとらえ、個人対応をしていくことを求めており、その活用としては、基準値という「一点」について対応するのはなく、栄養アセスメントを基に一定の幅・範囲の中で栄養計画やその評価を行うことで、対象者全てに対し許容範囲内で適切な食事を提供し、個人への対応ができるよう定めている。しかし、特定給食施設の給食業務は、合理性を重視するため、個人対応することは難しく、また一部の施設では実施されていないのが現状である。

栄養計画にあたっては、栄養アセスメントにより対象者の身体状況や栄養状態を把握し、1日習慣的な栄養摂取量の内、給食から摂取することが適当とされる栄養量を勘案しながら給与栄養目標量を設定していかなければならない。従って、個人が実際にどれだけの栄養量を実施献立から摂取したかを把握することが必要である。この把握方法となる残菜調査は重要である。

一般に残菜調査には、利用者が食べ残した食事量を喫食後に計量する方法（以後秤量法という）と、利用者自身または利用者以外の介護支援を行う第三者などが食べ残した食事量について質問紙を用いて回答する方法（以後質問紙法という）がある。秤量法は料理別や献立毎に利用者が食べ残した食事量を実測値で把握するものであるのに対し、質問紙法は利用者や第三者など個人の主観に頼る推測値というおおよそデータから食べ残した食事量を把握するという違いがある。

そこで、単一定食献立の場合に秤量法と質問紙法を併用して残菜調査を実施し、調査方法の違いにより1食分の摂取栄養量（推測値）にどの程度、差が生じるのかを比較した。また、特定給食施設において個人の摂取栄養量を把握するにあたり、合理的で好ましいと思われる残菜調査法はどのようなものなのかについて検討を行ったので報告をする。

調査方法

調査日：2005年7月5日，7月12日（学内での給食管理実習8回のうち2回）
対象：給食管理実習での給食利用者（2回延べ186人）
方法：学内での給食管理実習にて提供した実施献立（A・B献立；単一献立）について、秤量法と質問紙法を併用して残菜調査を行い、利用者が摂取した１食分の栄養量を推測した。
秤量法では、個人の残菜量は計量せず、利用者（A・B献立ともに93名）が食べ残した実施献立を料理毎に用意した容器に回収し、その重量を計量し
た。そして、予定献立をもとに調理によら重量変化率を用いて算出した料理毎のできるあがり重量を基準にして残食率を求め、給食利用者の摂取栄養量（推測値）を算出した。

質問紙法では、実施献立2種（表1）について食堂売り口にて利用者にアンケート用紙（以後質問紙という）を配布し、「全部食べた、1/4残した、1/2残した、3/4残した、全部残した」の5段階尺度で食べ残した食事量を自記式で記入させた。質問紙は、利用者が食堂を退室する際に提出を求め、回収した。そして、回答結果をもとに、1食分の摂取栄養量（推測値）の算出をした。

質問紙の回答集計および摂取栄養量の算出については、表計算ソフトExcelとMicrosoft Excelアドインソフト；エクセル栄養君ver.4.0βを用いた。

表1 実施献立

<table>
<thead>
<tr>
<th>献立</th>
<th>トマトとツナのスパゲッティ</th>
<th>マサドアンサラダ</th>
<th>コーンクリームスープ</th>
<th>すいか</th>
</tr>
</thead>
<tbody>
<tr>
<td>A献立</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B献立</td>
<td>夏野菜とチキンのカレーライス</td>
<td>グリーンサラダ</td>
<td>ブリ</td>
<td></td>
</tr>
</tbody>
</table>

調査結果および考察

1. 給食利用者および質問紙法の回答状況

給食利用者の所属別の状況は、学生が73.4％、職員が26.6％であり、18～29歳の若い女性が大半を占めた。

A・B献立の利用者数は、それぞれ93人で、延べ186人であった。

質問紙法による質問紙の回収率は、A献立が88.2％、B献立が87.1％であり、有効回答率は、それぞれ97.6％と98.8％であった。A・B献立ともに有効回答の実数は80であり、合計数160である。

2. 給与栄養目標量の設定

本学の給食管理実習における栄養計画で設定した給与栄養目標量と、残菜調査を実施したA・B献立それぞれの実施給与栄養量を表2に示す。

給与栄養目標量の設定にあたっては、まず供食数100食の人員構成を過去の給食利用者の人員構成を参考に、18～29歳・女性、身体活動レベルIを80％、IIを20％とし、「日本人的食事摂取基準（2005年版）」を利用して基準平均値を算出した。そして、利用者の内、食物栄養学科の学生が半数以上を占めるので、該当学生を対象に3日間の食事調査を実施し、その結果を利用者の栄養摂取状況の実態としてとらえ、給与栄養目標量の設定を行った。

残菜調査を行ったA・B献立それぞれの実施給与栄養量の算定については、食品の調理による重量変化を考慮し、予定献立をもとに五訂日本食品成分表による重量変化率4）を用いて算出した。

表2 給与栄養目標量および実施献立の栄養価

<table>
<thead>
<tr>
<th></th>
<th>エネルギー (kcal)</th>
<th>たんぱく質 (g)</th>
<th>脂質 (g)</th>
<th>カルシウム (mg)</th>
<th>鉄 (mg)</th>
<th>ビタミンA (μg RE)</th>
<th>ビタミンB1 (mg)</th>
<th>ビタミンB2 (mg)</th>
<th>ビタミンC (mg)</th>
<th>食物繊維 (g)</th>
<th>食塩相当量 (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>本学の基準における給与栄養目標量</td>
<td>670</td>
<td>22.0</td>
<td>18.0</td>
<td>200</td>
<td>3.0</td>
<td>180</td>
<td>0.30</td>
<td>0.33</td>
<td>30</td>
<td>6.7以上</td>
<td>3.5未満</td>
</tr>
<tr>
<td>A献立</td>
<td>704</td>
<td>23.8</td>
<td>23.5</td>
<td>171</td>
<td>2.8</td>
<td>282</td>
<td>0.31</td>
<td>0.37</td>
<td>37</td>
<td>7.4</td>
<td>5.2</td>
</tr>
<tr>
<td>B献立</td>
<td>717</td>
<td>18.6</td>
<td>18.6</td>
<td>146</td>
<td>2.0</td>
<td>370</td>
<td>0.23</td>
<td>0.31</td>
<td>52</td>
<td>6.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

*脂肪エネルギー比率は24%で設定
*A・B献立は重量変化率使用
3. 秤量法からみた摂取栄養量
1）料理毎の残棄状況

秤量法における料理毎の残棄状況を表3に示す。A献立の料理毎のできる栄養量に対する残棄率は、「トマトとツナのスペゲティ」が1.9％、「マセドアンサラダ」が4.9％、「コーニュースーブ」が2.1％、「すいか」が1.4％であった。また、B献立は「夏野菜とチキンのカレーライス」が0.9％、「グリーンサラダ」が2.7％、「ブリン」が1.6％となった。A献立の「マセドアンサラダ」の残棄率が他の3品目と比べて少し高い値になったが、それぞれ5％以下の残棄率であり、喫食状況は、各料理ともほぼ完食に近い状態だと判断できる。

2）献立全体からの残棄状況

複数定食献立方式などメニュー数が多い場合には料理数が多く、料理毎に残棄量を計量するのでは大変手間がかかり、実施することが難しい。このため、献立別に採取した献立全てに対してまとめて残棄を回収し、その重量を計量することで残棄状況を把握する方法もある。本調査では、料理毎の残棄量を計量し、その値を合計して実施献立の残棄量としてとらえ、残棄状況をみた。献立全体の残棄量はA献立が1.38kg、B献立が0.79kgであり、できあがり重量（A献立は約64.8kg、B献立は約63.7kg）に対する残棄率はA献立が2.1％、B献立が1.2％になった。今回は料理毎の残棄率が小さいため、献立全体の残棄率も小さい。

3）1食分の摂取栄養量（推測値）の比較

A・B献立において、料理毎の残棄率から算出した1食分の摂取栄養量（推測値）と、献立全体からみた残棄率を用いて算出した1食分の摂取栄養量（推測値）に差があるかをみた（表4、図1）。

前述したように、料理毎と献立全体からみた残棄率はともに5％以下であり、提出した食事は利用者にほぼ完食された状態にあった。このため、それぞれの残棄率から1食分の摂取栄養量を算出した結果を比較しても、あまり差はみられなかった。ただ、献立全体からみた場合は、料理毎の残棄量の差がなかったため、1食分の摂取栄養量は料理毎にみた場合よりも僅かではあるが多かった。

秤量法は、残棄を実際に計量するという点では利用者の摂取量から栄養量をより正確に把握することが可能であるため、残棄調査としては好ましい方法といえる。しかし、1人1人の計量では手間がかかりやすいう欠点もある。本調査では単一定食献立を用いて残棄調査を実施したので、献立全体から残棄を容易に算出することができた。しかし、カレーライス方式などは複数のメニューがあるので、一括して残棄を回収すると料理毎の残棄率を算出することは難しくなる。また、料理毎に残棄を回収する場合には、残棄の回収スペースを広くとらえなければならないなどの問題も生じてくる。

表3 秤量法における料理毎の残棄状況

<table>
<thead>
<tr>
<th>献立</th>
<th>料理名</th>
<th>予定献立（1食重量）（g）</th>
<th>できあがり残棄重量（g）</th>
<th>残棄量（kg）</th>
<th>残棄率（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>トマトとツナのスペゲティ</td>
<td>300</td>
<td>27,900</td>
<td>0.52</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>マセドアンサラダ</td>
<td>72</td>
<td>6,966</td>
<td>0.33</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>コーニュースープ</td>
<td>175</td>
<td>16,275</td>
<td>0.34</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>すいか</td>
<td>150</td>
<td>13,950</td>
<td>0.19</td>
<td>1.4</td>
</tr>
<tr>
<td>B</td>
<td>夏野菜とチキンのカレーライス</td>
<td>480</td>
<td>44,640</td>
<td>0.38</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>グリーンサラダ</td>
<td>95</td>
<td>8,835</td>
<td>0.20</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>ブリン</td>
<td>110</td>
<td>10,230</td>
<td>0.16</td>
<td>1.6</td>
</tr>
</tbody>
</table>

*料理による重量変化率を考慮

表4 秤量法における1食当たりの摂取栄養量（推測値）の比較

<table>
<thead>
<tr>
<th>料理</th>
<th>エネルギー</th>
<th>たんぱく質</th>
<th>脂質</th>
<th>食塩</th>
<th>鉄</th>
<th>ビタミンA</th>
<th>ビタミンB1</th>
<th>ビタミンB2</th>
<th>ビタミンC</th>
<th>食塩相当量</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(kcal)</td>
<td>(g)</td>
<td>(g)</td>
<td>(mg)</td>
<td>(mg)</td>
<td>(μgRE)</td>
<td>(mg)</td>
<td>(mg)</td>
<td>(mg)</td>
<td>(g)</td>
</tr>
<tr>
<td>A</td>
<td>献立</td>
<td>687</td>
<td>23.3</td>
<td>22.9</td>
<td>168</td>
<td>2.8</td>
<td>275</td>
<td>0.31</td>
<td>0.37</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>献立全体</td>
<td>690</td>
<td>23.3</td>
<td>23.0</td>
<td>168</td>
<td>2.7</td>
<td>276</td>
<td>0.30</td>
<td>0.36</td>
<td>36</td>
</tr>
<tr>
<td>B</td>
<td>献立</td>
<td>709</td>
<td>18.5</td>
<td>18.4</td>
<td>143</td>
<td>2.0</td>
<td>365</td>
<td>0.23</td>
<td>0.31</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>献立全体</td>
<td>710</td>
<td>18.4</td>
<td>18.4</td>
<td>145</td>
<td>2.0</td>
<td>366</td>
<td>0.23</td>
<td>0.31</td>
<td>51</td>
</tr>
</tbody>
</table>
4. 質問紙法からみた摂取栄養量

1) 料理毎の残査状況

料理毎の残査状況について、「全部食べた」1/4残した1/2残した3/4残した、全部残した」の5段階尺度で調べた結果を表5に示す。

いずれかの量を「残した」とする者の割合を料理毎にみると、A献立では「トマトとツナのスパゲッティ」が7.5％、「マセドアンサラダ」が15.0％、「コーンクリームスープ」が6.3％、「スパイス」が8.7％となった。「マセドアンサラダ」を食べ残した者の割合が他の3品目と比べて少し高く、6人に1人がいずれかの量を食べ残していた。B献立では、「夏野菜とチキンのカレーライス」が2.5％、「グリーンサラダ」が3.9％、「プリン」が3.9％となった。A献立の4品目について、B献立の3品目は食べ残した者の割合が5％以下と少なく、ほぼ完食に近い状況にあると推測できた。

<table>
<thead>
<tr>
<th>献立</th>
<th>料理名</th>
<th>全部食べた</th>
<th>1/4残した</th>
<th>1/2残した</th>
<th>3/4残した</th>
<th>全部残した</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>トマトとツナのスパゲッティ</td>
<td>74 92.5</td>
<td>4 5.0</td>
<td>2 2.5</td>
<td>0 0</td>
<td>0 0</td>
<td>6 7.5</td>
</tr>
<tr>
<td></td>
<td>マセドアンサラダ</td>
<td>68 85.0</td>
<td>3 3.7</td>
<td>3 3.7</td>
<td>5 6.3</td>
<td>1 1.3</td>
<td>12 15.0</td>
</tr>
<tr>
<td></td>
<td>コーンクリームスープ</td>
<td>75 93.7</td>
<td>2 2.5</td>
<td>2 2.5</td>
<td>0 0</td>
<td>1 1.3</td>
<td>5 6.3</td>
</tr>
<tr>
<td></td>
<td>スパイス</td>
<td>73 91.3</td>
<td>3 3.7</td>
<td>0 0</td>
<td>2 2.5</td>
<td>2 2.5</td>
<td>7 8.7</td>
</tr>
<tr>
<td>B</td>
<td>夏野菜とチキンのカレーライス</td>
<td>78 97.5</td>
<td>2 2.5</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>2 2.5</td>
</tr>
<tr>
<td></td>
<td>グリーンサラダ</td>
<td>77 96.1</td>
<td>1 1.3</td>
<td>1 1.3</td>
<td>0 0</td>
<td>1 1.3</td>
<td>3 3.9</td>
</tr>
<tr>
<td></td>
<td>プリン</td>
<td>77 96.1</td>
<td>1 1.3</td>
<td>1 1.3</td>
<td>0 0</td>
<td>1 1.3</td>
<td>3 3.9</td>
</tr>
</tbody>
</table>
表6 質問紙法における献立全体からの残葉状況

<table>
<thead>
<tr>
<th>献立</th>
<th>全部食べた</th>
<th>1/4残した</th>
<th>1/2残した</th>
<th>3/4残した</th>
<th>全部残した</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>人数(人)</td>
<td>費用(%)</td>
<td>人数(人)</td>
<td>費用(%)</td>
<td>人数(人)</td>
<td>費用(%)</td>
</tr>
<tr>
<td>A</td>
<td>64</td>
<td>80.0</td>
<td>13</td>
<td>16.3</td>
<td>3</td>
<td>3.7</td>
</tr>
<tr>
<td>B</td>
<td>74</td>
<td>92.5</td>
<td>5</td>
<td>6.2</td>
<td>1</td>
<td>1.3</td>
</tr>
</tbody>
</table>

2）献立全体からの残葉状況

献立全体からの残葉状況について、料理毎と同様に献立全体を5段階尺度で調べた結果は表6に示す通り、A献立は20.0%、B献立は7.5%の者がいずれかの量を残していた。A献立を食べ残した利用者は5人に1人であり、約8割の者は完食していた。

料理毎と献立全体からみた残葉状況を比較すると、献立全体からみた場合の方が料理毎にみた場合よりも高い割合になった。料理毎と献立全体から残葉量をみた場合とでは、「食べ残した量」に対する利用者ののらべ方には差があったようである。

3）料理毎と献立全体からみた1食分の摂取栄養量（推測値）の比較

(1) 料理毎の残葉量の組み合わせによる摂取栄養量

A・B献立について、料理毎の食べ残しの尺度を組み合わせて算出した1食分の摂取栄養量（推測値）を表7に示す。組み合わせは料理毎の残葉量を数値化し、「全部食べた」、「1/4残した」、「1/2残した」、「3/4残した」、「全部残した」の5段階尺度を1,2,3,4,5で表示）、主食、主菜、副菜、汁物、デザートの順に並べたものを用いた。例えばA献立の「3355」という組み合わせは、トマトとツナのスパゲッティは「1/2残した」、マサドアンサラダは「1/2残した」、コーネックリームスープは「全部食べた」、すいかは「全部食べた」ということを示す。

献立毎の組み合わせ数はA献立が17通り、B献立が8通りであった。A献立とB献立の組み合わせ数に差があるのは、献立に使用した料理数がA献立は4品に対し、B献立は1品少ない3品であったためである。

また、組み合わせによる摂取栄養量の評価としては、設定した目標量を下回らないようにすることを前提に、目標量の－10%を下限とし、許容範囲内の値を囲みで示した（表7）。

今回調査に用いた2つの定食献立は、それぞれ主がスパゲッティとカレーライスであり、主食が主菜を兼ねる献立であった。このため、主食だけでなく完食すると、ある程度のエネルギーや栄養素を摂取することができた。

質問紙法では、料理毎の残葉量を個々の利用者が回答するので、その組み合わせを把握することで、個人の残葉量や摂取した栄養素を推測することができる。同時に、許容範囲内での栄養摂取をしている利用者を簡便に把握することもできることから、この方法で長期間にわたり個人の残葉状況を記録すれば、対象者1人1人の摂取栄養量や嗜好などの習慣性を見いだすことも可能になる。

(2) 献立全体からの摂取栄養量

献立全体からみた残葉量を料理毎と同様に5段階尺度を用いて調査し、食べ残した量の尺度からそれぞれ算出した1食分の摂取栄養量（推測値）を表8に示す。

献立全体からみた場合には、料理毎の組み合わせから1食分の摂取栄養量をみた場合に比べて、許容範囲内でエネルギーや栄養素の摂取があまりできていなかった。利用者または第三者などが献立全体に対して食べ残した量をどの程度の割合として判断するかで、差が生じると考えられる。

献立全体から残葉量をみるということは、個々の料理を組み合わせて献立全体の摂取栄養量としてみるという作業がない分、集計は簡便に行うことができる。
表7 質問紙法における料理毎の残渣量の組み合わせによる摂取栄養量（推定値）

<table>
<thead>
<tr>
<th>組み合わせ</th>
<th>人数 (人)</th>
<th>エネルギー (kcal)</th>
<th>タンパク質 (g)</th>
<th>脂質 (g)</th>
<th>カルシウム (mg)</th>
<th>鉄 (mg)</th>
<th>ビタミンA (μgRE)</th>
<th>ビタミンB (g)</th>
<th>ビタミンC (g)</th>
<th>食塩相当量 (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5555</td>
<td>61</td>
<td>704</td>
<td>23.8</td>
<td>23.5</td>
<td>171</td>
<td>2.4</td>
<td>282</td>
<td>0.31</td>
<td>37</td>
<td>7.4</td>
</tr>
<tr>
<td>5552</td>
<td>2</td>
<td>662</td>
<td>23.1</td>
<td>23.4</td>
<td>167</td>
<td>2.6</td>
<td>204</td>
<td>0.27</td>
<td>35</td>
<td>7.0</td>
</tr>
<tr>
<td>5551</td>
<td>1</td>
<td>648</td>
<td>22.9</td>
<td>23.3</td>
<td>165</td>
<td>2.5</td>
<td>178</td>
<td>0.26</td>
<td>34</td>
<td>6.9</td>
</tr>
<tr>
<td>5515</td>
<td>1</td>
<td>568</td>
<td>19.6</td>
<td>16.2</td>
<td>56</td>
<td>2.7</td>
<td>223</td>
<td>0.26</td>
<td>31</td>
<td>6.8</td>
</tr>
<tr>
<td>5455</td>
<td>1</td>
<td>681</td>
<td>23.4</td>
<td>22.2</td>
<td>169</td>
<td>2.7</td>
<td>264</td>
<td>0.30</td>
<td>36</td>
<td>7.0</td>
</tr>
<tr>
<td>5444</td>
<td>1</td>
<td>633</td>
<td>22.2</td>
<td>20.4</td>
<td>139</td>
<td>2.8</td>
<td>223</td>
<td>0.28</td>
<td>31</td>
<td>6.8</td>
</tr>
<tr>
<td>5355</td>
<td>1</td>
<td>658</td>
<td>23.0</td>
<td>20.9</td>
<td>166</td>
<td>2.6</td>
<td>246</td>
<td>0.29</td>
<td>35</td>
<td>6.7</td>
</tr>
<tr>
<td>5334</td>
<td>1</td>
<td>576</td>
<td>20.7</td>
<td>17.3</td>
<td>108</td>
<td>2.5</td>
<td>191</td>
<td>0.26</td>
<td>26</td>
<td>6.3</td>
</tr>
<tr>
<td>5255</td>
<td>1</td>
<td>635</td>
<td>22.6</td>
<td>19.6</td>
<td>164</td>
<td>2.4</td>
<td>227</td>
<td>0.27</td>
<td>32</td>
<td>6.3</td>
</tr>
<tr>
<td>5254</td>
<td>1</td>
<td>621</td>
<td>22.4</td>
<td>19.6</td>
<td>163</td>
<td>2.3</td>
<td>201</td>
<td>0.26</td>
<td>31</td>
<td>6.2</td>
</tr>
<tr>
<td>5155</td>
<td>1</td>
<td>612</td>
<td>22.2</td>
<td>18.3</td>
<td>161</td>
<td>2.3</td>
<td>209</td>
<td>0.26</td>
<td>32</td>
<td>5.9</td>
</tr>
<tr>
<td>4555</td>
<td>1</td>
<td>599</td>
<td>19.5</td>
<td>20.8</td>
<td>161</td>
<td>2.3</td>
<td>271</td>
<td>0.27</td>
<td>34</td>
<td>6.2</td>
</tr>
<tr>
<td>4355</td>
<td>1</td>
<td>531</td>
<td>17.4</td>
<td>17.2</td>
<td>104</td>
<td>2.3</td>
<td>242</td>
<td>0.25</td>
<td>26</td>
<td>35</td>
</tr>
<tr>
<td>4441</td>
<td>1</td>
<td>486</td>
<td>17.2</td>
<td>17.5</td>
<td>124</td>
<td>1.9</td>
<td>134</td>
<td>0.20</td>
<td>26</td>
<td>17</td>
</tr>
<tr>
<td>4255</td>
<td>1</td>
<td>530</td>
<td>18.3</td>
<td>16.9</td>
<td>154</td>
<td>1.9</td>
<td>216</td>
<td>0.23</td>
<td>30</td>
<td>27</td>
</tr>
<tr>
<td>3555</td>
<td>1</td>
<td>494</td>
<td>15.3</td>
<td>18.1</td>
<td>151</td>
<td>1.9</td>
<td>259</td>
<td>0.23</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>3355</td>
<td>1</td>
<td>448</td>
<td>14.5</td>
<td>15.5</td>
<td>146</td>
<td>1.7</td>
<td>223</td>
<td>0.21</td>
<td>29</td>
<td>43</td>
</tr>
</tbody>
</table>

*左の数値からトマトとツナのスパゲッティ、マヨネーズサラダ、コーヒークリームスプー、すいかの残渣量を示す

表8 質問紙法における献立全体からの摂取栄養量（推定値）

<table>
<thead>
<tr>
<th>組み合わせ</th>
<th>人数 (人)</th>
<th>エネルギー (kcal)</th>
<th>タンパク質 (g)</th>
<th>脂質 (g)</th>
<th>カルシウム (mg)</th>
<th>鉄 (mg)</th>
<th>ビタミンA (μgRE)</th>
<th>ビタミンB (g)</th>
<th>ビタミンC (g)</th>
<th>食塩相当量 (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>全部食べた</td>
<td>64</td>
<td>704</td>
<td>23.8</td>
<td>23.5</td>
<td>171</td>
<td>2.8</td>
<td>282</td>
<td>0.31</td>
<td>37</td>
<td>7.4</td>
</tr>
<tr>
<td>1/4残した</td>
<td>13</td>
<td>528</td>
<td>17.9</td>
<td>17.6</td>
<td>128</td>
<td>2.1</td>
<td>212</td>
<td>0.23</td>
<td>28</td>
<td>5.6</td>
</tr>
<tr>
<td>1/2残した</td>
<td>3</td>
<td>352</td>
<td>11.9</td>
<td>11.8</td>
<td>86</td>
<td>1.4</td>
<td>141</td>
<td>0.16</td>
<td>19</td>
<td>3.7</td>
</tr>
<tr>
<td>3/4残した</td>
<td>0</td>
<td>176</td>
<td>6.0</td>
<td>5.9</td>
<td>43</td>
<td>0.7</td>
<td>71</td>
<td>0.08</td>
<td>9</td>
<td>1.9</td>
</tr>
</tbody>
</table>

*左の数値から鶏卵とチキンのカレーライス、グリーンサラダ、プリンの残渣量を示す

<table>
<thead>
<tr>
<th>組み合わせ</th>
<th>人数 (人)</th>
<th>エネルギー (kcal)</th>
<th>タンパク質 (g)</th>
<th>脂質 (g)</th>
<th>カルシウム (mg)</th>
<th>鉄 (mg)</th>
<th>ビタミンA (μgRE)</th>
<th>ビタミンB (g)</th>
<th>ビタミンC (g)</th>
<th>食塩相当量 (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>全部食べた</td>
<td>74</td>
<td>717</td>
<td>18.6</td>
<td>18.6</td>
<td>146</td>
<td>2.0</td>
<td>370</td>
<td>0.23</td>
<td>31</td>
<td>6.0</td>
</tr>
<tr>
<td>1/4残した</td>
<td>5</td>
<td>538</td>
<td>14.0</td>
<td>14.0</td>
<td>110</td>
<td>1.5</td>
<td>278</td>
<td>0.17</td>
<td>23</td>
<td>4.5</td>
</tr>
<tr>
<td>1/2残した</td>
<td>1</td>
<td>359</td>
<td>9.3</td>
<td>9.3</td>
<td>73</td>
<td>1.0</td>
<td>185</td>
<td>0.12</td>
<td>16</td>
<td>3.0</td>
</tr>
<tr>
<td>3/4残した</td>
<td>0</td>
<td>179</td>
<td>4.7</td>
<td>4.7</td>
<td>37</td>
<td>0.5</td>
<td>93</td>
<td>0.06</td>
<td>8.8</td>
<td>1.5</td>
</tr>
</tbody>
</table>

- 24 -
(3) 料理毎と献立全体からみた1食当たりの平均摂取栄養量の比較

料理毎および献立全体からみた栄養状況をもとに算出した1食分の摂取栄養量に差はあるのかをみるために、それぞれの平均摂取栄養量（推測値）を算出し、比較を行った（表9、図2）。

料理毎からみた摂取栄養量の方が、僅かではあるが献立全体からみた場合よりもエネルギーや各栄養素の値は高かったが、両者の間に有意差はみられなかった。

表9 質問紙法における残菜状況からみた1食あたりの平均摂取栄養量（推測値）の比較

<table>
<thead>
<tr>
<th>食立</th>
<th>エネルギー（kcal）</th>
<th>たんぱく質（g）</th>
<th>カルシウム（mg）</th>
<th>鉄（μg RE）</th>
<th>ビタミンA（mg）</th>
<th>ビタミンB1（mg）</th>
<th>ビタミンB2（mg）</th>
<th>ビタミンC（g）</th>
<th>食事摂取量</th>
<th>食糖摂取量</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>料理毎</td>
<td>678 23.1 165 2.7</td>
<td>267 0.30</td>
<td>265 0.29</td>
<td>367 0.23</td>
<td>362 0.22</td>
<td>7.1</td>
<td>4.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>献立全体</td>
<td>666 22.4 161 2.6</td>
<td>265 0.35</td>
<td>367 0.31</td>
<td>362 0.30</td>
<td>7.0</td>
<td>4.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>料理毎</td>
<td>711 18.4 144 2.0</td>
<td>367 0.23</td>
<td>362 0.22</td>
<td>51</td>
<td>5.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>献立全体</td>
<td>701 18.2 143 2.0</td>
<td>362 0.22</td>
<td>51</td>
<td>5.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* p < 0.05

5. 秤量法と質問紙法における平均摂取栄養量（推測値）の比較

秤量法および質問紙法を用いて算出した料理毎と献立全体からみた平均摂取栄養量（推測値）には差があるかどうかをみた（表10）。

秤量法と質問紙法では調査方法が異なるため有意差検定を行うことはできないが、大きな差はみられなかった。このことから、実測値を用いなくても、利用者の飢餓係数は有効であるので、質問紙法による推測値で十分に摂取栄養量の把握は可能であることがわかる。

図2 質問紙法での摂取栄養量（推測値）の比較

□ 目標量 □ 実際献立 □ 料理毎 □ 献立全体
表10 検量法での摂取栄養量（推測値）と質問紙法における平均摂取栄養量（推測値）との比較

<table>
<thead>
<tr>
<th>料理名</th>
<th>エネルギー</th>
<th>たんぱく質</th>
<th>脂質</th>
<th>カルシウム</th>
<th>蛋白質</th>
<th>ビタミンA</th>
<th>ビタミンB</th>
<th>ビタミンB</th>
<th>ビタミンC</th>
<th>食物繊維(g)</th>
<th>食塩相当量</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(kcal)</td>
<td>(g)</td>
<td>(g)</td>
<td>(mg)</td>
<td>(mg)</td>
<td>(μg RE)</td>
<td>(g)</td>
<td>(g)</td>
<td>(g)</td>
<td>(g)</td>
<td>(g)</td>
</tr>
<tr>
<td>実食結果出荷量</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>704</td>
<td>23.8</td>
<td>23.5</td>
<td>171</td>
<td>2.8</td>
<td>282</td>
<td>0.31</td>
<td>0.37</td>
<td>37</td>
<td>7.4</td>
<td>5.2</td>
</tr>
<tr>
<td>検量法</td>
<td>727</td>
<td>23.2</td>
<td>23.5</td>
<td>168</td>
<td>2.8</td>
<td>275</td>
<td>0.31</td>
<td>0.37</td>
<td>36</td>
<td>7.2</td>
<td>5.1</td>
</tr>
<tr>
<td>質問紙法</td>
<td>728</td>
<td>23.1</td>
<td>22.5</td>
<td>165</td>
<td>2.7</td>
<td>267</td>
<td>0.30</td>
<td>0.36</td>
<td>35</td>
<td>7.1</td>
<td>5.0</td>
</tr>
<tr>
<td>B</td>
<td>717</td>
<td>18.6</td>
<td>18.4</td>
<td>146</td>
<td>2.0</td>
<td>370</td>
<td>0.23</td>
<td>0.31</td>
<td>52</td>
<td>6.0</td>
<td>3.0</td>
</tr>
<tr>
<td>実食結果出荷量</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>708</td>
<td>18.5</td>
<td>18.4</td>
<td>143</td>
<td>2.0</td>
<td>365</td>
<td>0.23</td>
<td>0.31</td>
<td>51</td>
<td>6.0</td>
<td>3.0</td>
</tr>
<tr>
<td>検量法</td>
<td>711</td>
<td>18.4</td>
<td>18.4</td>
<td>144</td>
<td>2.0</td>
<td>367</td>
<td>0.23</td>
<td>0.31</td>
<td>51</td>
<td>5.9</td>
<td>3.0</td>
</tr>
</tbody>
</table>

全体

表10 検量法での摂取栄養量（推測値）と質問紙法における平均摂取栄養量（推測値）との比較

<table>
<thead>
<tr>
<th>料理名</th>
<th>エネルギー</th>
<th>たんぱく質</th>
<th>脂質</th>
<th>カルシウム</th>
<th>鉄</th>
<th>ビタミンA</th>
<th>ビタミンB</th>
<th>ビタミンB</th>
<th>ビタミンC</th>
<th>食物繊維(g)</th>
<th>食塩相当量</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(kcal)</td>
<td>(g)</td>
<td>(g)</td>
<td>(mg)</td>
<td>(mg)</td>
<td>(μg RE)</td>
<td>(mg)</td>
<td>(mg)</td>
<td>(mg)</td>
<td>(g)</td>
<td>(g)</td>
</tr>
<tr>
<td>A</td>
<td>704</td>
<td>23.8</td>
<td>23.5</td>
<td>171</td>
<td>2.8</td>
<td>282</td>
<td>0.31</td>
<td>0.37</td>
<td>37</td>
<td>7.4</td>
<td>5.2</td>
</tr>
<tr>
<td>検量法</td>
<td>690</td>
<td>23.3</td>
<td>23.0</td>
<td>168</td>
<td>2.7</td>
<td>276</td>
<td>0.30</td>
<td>0.36</td>
<td>36</td>
<td>7.3</td>
<td>5.1</td>
</tr>
<tr>
<td>質問紙法</td>
<td>662</td>
<td>22.4</td>
<td>22.1</td>
<td>161</td>
<td>2.6</td>
<td>265</td>
<td>0.29</td>
<td>0.35</td>
<td>35</td>
<td>7.0</td>
<td>4.9</td>
</tr>
<tr>
<td>B</td>
<td>717</td>
<td>18.6</td>
<td>18.4</td>
<td>146</td>
<td>2.0</td>
<td>370</td>
<td>0.23</td>
<td>0.31</td>
<td>52</td>
<td>6.0</td>
<td>3.0</td>
</tr>
<tr>
<td>検量法</td>
<td>710</td>
<td>18.4</td>
<td>18.4</td>
<td>145</td>
<td>2.0</td>
<td>366</td>
<td>0.23</td>
<td>0.31</td>
<td>51</td>
<td>5.9</td>
<td>3.0</td>
</tr>
</tbody>
</table>

まとめ

検量法は、実測値をもとに残渣状況を把握することから、利用者の状況に近い摂取栄養量を把握する方法としては好ましい方法といえる。しかし、個人を対象に調査を実施する場合には、計量と記録を行う作業が給食関係者などの負担になる。このため計量の簡便化をはかるには、料理毎や提供した献立全体から計量を行うことになり、平均的な摂取栄養量の把握はできても個人に対応した状況把握は難しくなる。また、検量法では、残渣量と残渣内容の把握はできても、なぜ食べ残したのかという理由の把握まではできない。これに対し、質問紙法は利用者もまた第三者などに残渣量を尺度という簡便な方法で答えてもらうため、検量法に比べ給食関係者の調査時の負担は少なくすむ。残渣量の尺度に関しては個人の主観によるところが大きく、個人差が生じやすいもの。残渣量とともに食べ残した理由などを同時に調査することが可能であることから、給食内容に対する傾向を含め、個人に対応した状況把握ができる。また、残渣調査を継続することで、個人の長期における食事状況を把握することも可能になる。

今回の調査結果では、一定食食立の場合には検量法を用いて算出した1食当たりの摂取栄養量（推測値）と質問紙法を用いて算出した平均摂取栄養量（推測値）との間には、あまり差はみられないかったことから、特定給食施設における残渣調査は、簡便でかつ個人の状況把握が可能な質問紙法が向くものと思われる。ただし、特定給食施設で実施されている給食形態には、給食対象者のニーズに応えるためカフェテリア方式や複数定食献立方式など多種類のメニューを給食に導入している施設が数多くあることから、質問紙の内容検討、特に残渣量の尺度などについて検討していくことが大切になる。今後は、この調査結果をもとに、学内での給食実習等を事例に検討を重ね、また、特定給食施設における残渣調査の実施状況の把握なども行いながら、質問紙法の欠点を補いつつ簡便でなおかつ客観的な尺度の質問紙の検討などを行い、給食における個人対応を目指した栄養管理の実施に役立てていきたい。

参考文献
1）第一出版編集部編：厚生労働省策定日本人の食事摂取基準（2005年版），第一出版，2005
2）山本茂・由井田克一編：日本人の食事摂取基準（2005年版）の活用 特定給食施設等における食事計画編，第一出版，2005
3）吉村幸雄編：特定給食施設における栄養管理，筑月社，2005
4）食品成分研究調査会編：五訂日本食品成分表，医歯薬出版，2001

－食物栄養学科－